Mysql数据库

一、索引

索引的定义

1.什么是索引?

数据库索引,是数据库管理系统中一个排序的数据结构,索引的实现通常使用B树及其变种B+树。

在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。数据库索引其实就是为了使查询数据效率快。

2.索引的作用?它的优点缺点是什么?

索引作用:

协助快速查询、更新数据库表中数据。

为表设置索引要付出代价的:

  • 一是增加了数据库的存储空间

  • 二是在插入和修改数据时要花费较多的时间 (因为索引也要随之变动)

3.索引的优缺点?

创建索引可以大大提高系统的性能(优点):

  1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性

  2. 可以大大加快数据的检索速度,这也是创建索引的最主要的原因

  3. 可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。

  4. 在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间

  5. 通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

增加索引也有许多不利的方面(缺点):

  1. 创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。

  2. 索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。

  3. 当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度

4.哪些列适合建立索引、哪些不适合建索引?

索引是建立在数据库表中的某些列的上面。在创建索引的时候,应该考虑在哪些列上可以创建索引,在哪些列上不能创建索引。

一般来说,应该在这些列上创建索引:

(1)在经常需要搜索的列上,可以加快搜索的速度;

(2)在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;

(3)在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;

(4)在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;

(5)在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;

(6)在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。

对于有些列不应该创建索引:

(1)对于那些在查询中很少使用或者参考的列不应该创建索引。

这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。

(2)对于那些只有很少数据值的列也不应该增加索引。

这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。

(3)对于那些定义为text, image和bit数据类型的列不应该增加索引。

这是因为,这些列的数据量要么相当大,要么取值很少。

(4)当修改性能远远大于检索性能时,不应该创建索引。

这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。

二、 Mysql索引

1. B+ Tree原理

目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构。

B Tree 指的是 Balance Tree,也就是平衡树。平衡树是一颗查找树,并且所有叶子节点位于同一层。

B+ Tree 是基于 B Tree 和叶子节点顺序访问指针进行实现,它具有 B Tree 的平衡性,并且通过顺序访问指针来提高区间查询的性能。

在 B+ Tree 中,一个节点中的 key 从左到右非递减排列。

1.png

B树和B+树的区别

  • B树,每个节点都存储key和data,所有节点组成这棵树,并且叶子节点指针为nul,叶子结点不包含任何关键字信息。

  • B+树,所有的叶子结点中包含了全部关键字 key 的信息,及指向含有这些关键字记录的指针,且叶子结点之间按关键字的大小自小而大的顺序链接,即使用链表相连,便于区间查找和遍。所有的非叶子结点可以看成是索引部分,结点中仅含有其子树根结点中最大(或最小)key关键字, 不包含data信息。 (而B树的非叶子节点也包含需要查找的data信息)

与红黑树的比较

红黑树等平衡树也可以用来实现索引,但是文件系统及数据库系统普遍采用 B+ Tree 作为索引结构,这是因为使用 B+ 树访问磁盘数据有更高的性能

b树(balance tree)和b+树应用在数据库索引,可以认为是m叉的多路平衡查找树,但是从理论上讲,二叉树查找速度和比较次数都是最小的,为什么不用二叉树呢?

因为我们要考虑磁盘IO的影响,它相对于内存来说是很慢的。数据库索引是存储在磁盘上的,当数据量大时,就不能把整个索引全部加载到内存了,只能逐一加载每一个磁盘页(对应索引树的节点)。所以我们要减少IO次数,对于树来说,IO次数就是树的高度,而“矮胖”就是b树的特征之一,它的每个节点最多包含m个孩子,m称为b树的阶,m的大小取决于磁盘页的大小。

(一)B+ 树有更低的树高

平衡树的树高 O(h)=O(logdN),其中 d 为每个节点的出度。红黑树的出度为 2,而 B+ Tree 的出度一般都非常大,所以红黑树的树高 h 很明显比 B+ Tree 大非常多

(二)磁盘访问原理

操作系统一般将内存和磁盘分割成固定大小的块,每一块称为一页,内存与磁盘以页为单位交换数据。数据库系统将索引的一个节点的大小设置为页的大小,使得一次 I/O 就能完全载入一个节点。

如果数据不在同一个磁盘块上,那么通常需要移动制动手臂进行寻道,而制动手臂因为其物理结构导致了移动效率低下,从而增加磁盘数据读取时间。B+ 树相对于红黑树有更低的树高,进行寻道的次数与树高成正比,在同一个磁盘块上进行访问只需要很短的磁盘旋转时间,所以 B+ 树更适合磁盘数据的读取。

(三)磁盘预读特性

为了减少磁盘 I/O 操作,磁盘往往不是严格按需读取,而是每次都会预读。预读过程中,磁盘进行顺序读取,顺序读取不需要进行磁盘寻道,并且只需要很短的磁盘旋转时间,速度会非常快。并且可以利用预读特性,相邻的节点也能够被预先载入。

为什么B+树比B树更适合实际应用中操作系统的文件索引和数据库索引?

  • B+的磁盘读写代价更低

    B+的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。

  • B+tree的查询效率更加稳定

    由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

2. Mysql索引

索引是在存储引擎层实现的,而不是在服务器层实现的,所以不同存储引擎具有不同的索引类型和实现。

1)B+Tree 索引

是大多数 MySQL 存储引擎的默认索引类型。

因为不再需要进行全表扫描,只需要对树进行搜索即可,所以查找速度快很多。

因为 B+ Tree 的有序性,所以除了用于查找,还可以用于排序和分组。

可以指定多个列作为索引列,多个索引列共同组成键。

适用于全键值、键值范围和键前缀查找,其中键前缀查找只适用于最左前缀查找。如果不是按照索引列的顺序进行查找,则无法使用索引。

Mysql有MyISAM和InnoDB两个存储引擎,这两种存储引擎的索引实现方式是不同的:

MyISAM索引实现

MyISAM引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址。下图是MyISAM索引的原理图:

1.png

这里设表一共有三列,假设我们以Col1为主键,则图中是一个MyISAM表的主索引(Primary key)示意。MyISAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主索引和辅助索引(Secondary key)在结构上没有任何区别,只是主索引要求key是唯一的,而辅助索引的key可以重复。

MyISAM的索引方式也叫做“非聚集”的,这是为了与InnoDB的聚集索引区分。

InnoDB

和MyISAM索引的一个重大区别是:InnoDB的数据文件本身就是索引文件。从上文知道,MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在InnoDB中,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。

2.png

从图中可以看出叶节点包含了完整的数据记录。这种索引叫做聚集索引。因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有)。

另一个与MyISAM索引的不同是InnoDB的辅助索引data域存储相应记录主键的值而不是地址。即InnoDB的所有辅助索引都引用主键作为data域。下图为定义在Col3上的一个辅助索引:

3.png

聚集索引这种实现方式使得按主键的搜索十分高效,但是辅助索引搜索需要检索两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。

2)哈希索引

哈希索引能以 O(1) 时间进行查找,但是失去了有序性:

  • 无法用于排序与分组;
  • 只支持精确查找,无法用于部分查找和范围查找。

InnoDB 存储引擎有一个特殊的功能叫“自适应哈希索引”,当某个索引值被使用的非常频繁时,会在 B+Tree 索引之上再创建一个哈希索引,这样就让 B+Tree 索引具有哈希索引的一些优点,比如快速的哈希查找。

3)全文索引

MyISAM 存储引擎支持全文索引,用于查找文本中的关键词,而不是直接比较是否相等。

查找条件使用 MATCH AGAINST,而不是普通的 WHERE。

全文索引使用倒排索引实现,它记录着关键词到其所在文档的映射。

InnoDB 存储引擎在 MySQL 5.6.4 版本中也开始支持全文索引。

4) 空间数据索引

MyISAM 存储引擎支持空间数据索引(R-Tree),可以用于地理数据存储。空间数据索引会从所有维度来索引数据,可以有效地使用任意维度来进行组合查询。

必须使用 GIS 相关的函数来维护数据。

三、存储引擎

MySQL有三种常见的存储引擎:InnoDB、MyISAM 和 MEMORY

1. InnoDB 和 MyISAM 的区别

InnoDB 是 MySQL 默认的事务型存储引擎,只有在需要它不支持的特性时,才考虑使用其它存储引擎

  • 事务:InnoDB 支持事务型,MyISAM不支持事务
    • MyISAM:强调的是性能,每次查询具有原子性,其执行数度比InnoDB类型更快,但是不提供事务支持。
    • InnoDB:提供事务支持事务,外部键等高级数据库功能。 具有事务(commit)、回滚(rollback)和崩溃修复能力(crash recovery capabilities)的事务安全(transaction-safe (ACID compliant))型表。
  • 存储结构:MyISAM的数据文件和索引文件是分开存储的, InnoDB所有的表都保存在同一个数据文件中
  • 存储空间:MyISAM 可被压缩,存储空间较小; InnoDB 需要更多的内存和存储,它会在主内存中建立其专用的缓冲池用于高速缓冲数据和索引
  • 并发:MyISAM 只支持表级锁,而 InnoDB 还支持行级锁。
    • InnoDB支持数据行锁定,而MyISAM不支持行锁定,只支持锁定整个表。即MyISAM同一个表上的读锁和写锁是互斥的,MyISAM并发读写时如果等待队列中既有读请求又有写请求,默认写请求的优先级高,即使读请求先到,所以MyISAM不适合于有大量查询和修改并存的情况,那样查询进程会长时间阻塞。
  • 表主键: MyISAM 允许没有任何索引和主键的表存在,索引都是保存行的地址; InnoDB 必须有主键,如果没有设定主键或者非空唯一索引,就会自动生成一个6字节的主键(用户不可见),数据是主索引的一部分
  • 外键:InnoDB 支持外键,MyISAM不支持
  • 备份:InnoDB 支持在线热备份。
  • 崩溃恢复:MyISAM 崩溃后发生损坏的概率比 InnoDB 高很多,而且恢复的速度也更慢。
  • 其它特性:MyISAM 支持压缩表和空间数据索引。

MyISAM和InnoDB两者的应用场景:

1) MyISAM管理非事务表。它提供高速存储和检索,以及全文搜索能力。如果应用中需要执行大量的SELECT查询,那么MyISAM是更好的选择。
2) InnoDB用于事务处理应用程序,具有众多特性,包括ACID事务支持。如果应用中需要执行大量的INSERT或UPDATE操作,则应该使用InnoDB,这样可以提高多用户并发操作的性能。

但是实际场景中,针对具体问题需要具体分析,一般而言可以遵循以下几个问题:

  • 数据库是否有外键?
  • 是否需要事务支持?
  • 是否需要全文索引?
  • 数据库经常使用什么样的查询模式?在写多读少的应用中还是Innodb插入性能更稳定,在并发情况下也能基本,如果是对读取速度要求比较快的应用还是选MyISAM。
  • 数据库的数据有多大? 大尺寸倾向于innodb,因为事务日志,故障恢复。

https://www.cnblogs.com/kevingrace/p/5685355.html

四、数据库锁

1. 锁的类型

MySQL有三种锁的级别:页级、表级、行级。

  • 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。
  • 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
  • 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般

2. 死锁

什么是死锁?

死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等竺的进程称为死锁进程。

表级锁不会产生死锁.所以解决死锁主要还是针对于最常用的InnoDB。

死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。

那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。

死锁的解决办法?

  • 查出的线程杀死 kill
    SELECT trx_MySQL_thread_id FROM information_schema.INNODB_TRX;

  • 设置锁的超时时间
    Innodb 行锁的等待时间,单位秒。可在会话级别设置,RDS 实例该参数的默认值为 50(秒)。

    生产环境不推荐使用过大的 innodb_lock_wait_timeout参数值
    该参数支持在会话级别修改,方便应用在会话级别单独设置某些特殊操作的行锁等待超时时间,如下:
    set innodb_lock_wait_timeout=1000; —设置当前会话 Innodb 行锁等待超时时间,单位秒。

  • 指定获取锁的顺序

3. 乐观锁和悲观锁

悲观锁(Pessimistic Lock):

悲观锁特点:先获取锁,再进行业务操作。

即“悲观”的认为获取锁是非常有可能失败的,因此要先确保获取锁成功再进行业务操作。通常所说的“一锁二查三更新”即指的是使用悲观锁。通常来讲在数据库上的悲观锁需要数据库本身提供支持

乐观锁(Optimistic Lock):

乐观锁,也叫乐观并发控制,它假设多用户并发的事务在处理时不会彼此互相影响,各事务能够在不产生锁的情况下处理各自影响的那部分数据。在提交数据更新之前,每个事务会先检查在该事务读取数据后,有没有其他事务又修改了该数据。如果其他事务有更新的话,那么当前正在提交的事务会进行回滚。

乐观锁的特点先进行业务操作,不到万不得已不去拿锁。即“乐观”的认为拿锁多半是会成功的,因此在进行完业务操作需要实际更新数据的最后一步再去拿一下锁就好。乐观锁在数据库上的实现完全是逻辑的,不需要数据库提供特殊的支持

悲观锁和乐观锁是数据库用来保证数据并发安全防止更新丢失的两种方法。悲观锁和乐观锁大部分场景下差异不大,一些独特场景下有一些差别,一般我们可以从如下几个方面来判断。

  • 响应速度: 如果需要非常高的响应速度,建议采用乐观锁方案,成功就执行,不成功就失败,不需要等待其他并发去释放锁。’
  • 冲突频率: 如果冲突频率非常高,建议采用悲观锁,保证成功率,如果冲突频率大,乐观锁会需要多次重试才能成功,代价比较大。
  • 重试代价: 如果重试代价大,建议采用悲观锁。